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A computer microscope zooms in for a look

at the most complex objece in mathematics

by A. K. Dewdney

Thc Mandelbrot set broods in si-
lent complexity at the center of
a vast two-dimensional sheet
of numbers called the complex plane.
When a certain operation is applied re-
peatedly to the numbers, the ones out-
side the set flee to infinity. The num-
bers inside remain to drift or dance
about. Close to the boundary minutely
choreographed wanderings mark the
onset of the instability. Here is an infi-
nite regress of detail that astonishes us
with its variety, its complexity and its
strange beauty.

The set is named for Benoit B. Man-
delbrot, a research fellow at the IBM
Thomas J. Watson Research Center
in Yorktown Heights, N.Y. From his
work with geometric forms Mandel-
brot has developed the ficld he calls
fractal geometry, the mathematical
study of forms having a fractional di-
mension. In particular the boundary
of the Mandelbrot set is a fractal, but
it is also much more.,

With the aid of a relatively simple
program a computer can be converted
inte a kind of microscope for viewing
the boundary of the Mandelbrot set. In
principle one can zoom in for a closer
look at any part of the set at any mag-
nification [see cover of this issnwe and il-
fustrations on pages 17-19]. From a dis-
tant vantage the set resembles a squat,
wart-covered figure eight lying on ils
side. The inside of the figure is omi-
nously black. Surrounding 1t 15 a halo
colored electric white, which gives way
to deep blues and blacks in the outer
reaches of the plane.

Approaching the Mandelbrot sct,
one finds that each wart is a tiny fig-
ure shaped much like the parent sct.
Fooming in for a close look at one of
the tiny figures, however, opens up an
entirely different pattern: a riot of or-
ganic-locking tendrils and curlicues
sweeps out in whorls and rows. Magni-
fyving a curlicue reveals yet another
scene: it is made up of pairs of whorls
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joined by bridges of filigree. A magni-
fied bridge turns out to have two curli-
cues sprouting from its center. In the
center of this center, so to speak, is
a four-way bridge with four more curl-
icues, and in the center of these curli-
cues another version of the Mandel-
brot set is found.

The magnified version is not quite
the same Mandelbrot set. As the zoom
continues, such objects seem to reap-
pear, but a closer look always turns
up differences. Things go on this way
forever, infinitely various and fright-
eningly lovely,

Hnrc I shall describe two computer
programs, both of which explore
the effects of iterated operations such
as the one that leads to the Mandel-
brot set. The first program generated
the colored illustrations appearing in
this month’s column. The program can
be adapted to run on personal comput-
ers that have the appropriate hardware
and software for generating graphics.
It will create satisfying images even if
one has access only to a monochrome
display. The second program is for
readers who, like me, need an occa-
sional retreat from infinite complexity
to the apparent simplicity of the finite.

The word “complex™ as used here
has two meanings. The usual meaning
is obviously appropriate for describing
the Mandelbrot set, but the word has
a second and more technical sense. A
number 15 complex when it is made
up of two parts, which for historical
reasons are called real and imaginary.
These terms no longer hatve any special
significance: the two parts of a com-
plex number might as well be called
Humpty and Dumpty. Thus 7 + 47 is
a complex number with real part
7 (Humpty) and imaginary part 47
(Dumpty). The italic / next to the 4
shows which part of the complex num-
ber is imaginary.

Every complex number can be rep-
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resented by a point in the plane; the
plane of complex numbers is called
the complex plane. To find 7 + 4/ in
the complex plane, start at the complex
number 0, or 0 + O/, and measure sev-
en units cast and four units north, The
resulting point represents 7 + 44, The
complex plane is an uncountable infin-
ity of such numbers. Their real parts
and their imaginary parts can be either
positive or negative and either whole
numbers or decimal expansions,

Adding or multiplying two complex
numbers is casy. To add 3 — 2/ and
7+ 4, add the parts separately; the
sum is 10 + 27 Multiplying complex
numbers is only slightly more difficult.
For example, if the symbol 7 is treat-
ed like the x in high school algebra,
the product of 3 — 27 and 7+ 4/ is
21 4 127 — 14 — 82 At this stage a
special property of the symbol i must
be brought into play: it happens that 2
equals — 1. Thus the product can be
simplificd by collecting the real and
the imaginary parts: it is 29 — 24,

It is now possible to describe the iter-
ative process that generates the Man-
delbrot set. Begin with the algebraic
expression z€ + ¢, where zisa complex
number that is allowed to vary and ¢
15 a certain fixed complex number. Set
z initially to be egual to the complex
number 0. The square of z is then O
and the result of adding ¢ 1o 2215 just ¢,
Now substitute this result for z in the
expression 28 + ¢, The new sum is
€2 + e Again substitute for z. The next
sum is {2+ )2 + ¢, Continue the
process, always making the output of
the last step the input for the next one.

Strange things happen when the iter-
ations are carried out for particular
values of ¢. For example, here is what
happens when cis 1 + 42

first iteration, 1 + 3/
second iteration, —7 + 77
third iteration, 1 — '-)?:

MNote that the real and the imagi-
nary parts may grow, shrink or change
sign. If this process of iteration con-
tinues, the resulting complex numbers
get progressively larger,

What exactly is meant by the size
of a complex number? Since complex
numbers correspond to points in the
plane, ideas of distance apply. The size
of a complex number is just its dis-
tance from the complex number 0.
That distance is the hypotenuse of a
right triangle whose sides are the real
and the imaginary parts of the com-
plex number. Hence to find the size of
the number square each of s parts,
add the two squared values and take
the square root of the sum. For exam-
ple, the size of the complex number



+ 47 1% the square root of 72 + 42 or
approximately 8.062. When complex
numbers reach a certain size under the
iterative process | have just deseribed,
they grow very quickly: indeed, after a
few more iterations they exceed the ca-
pacity of any compulter.

Fortunately [ can ignore all the com-
plex numbers ¢ that run screaming offl
to infinity, The Mandelbrot set s the
set of all complex numbers ¢ for which
the size of 22 + ¢ is finite even after an
indefinitely large number of iterations.
The program | am about to describe
scarches for such numbers, [ am in-
debted in all of this 1o John H. Hub-
bard, a mathematician at Cornell Uni-
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versity. Hubbard is an authority on the
Mandelbrot set, and he was onc of the
first people 1o make computer-gener-
ated images of it. Most of the images in
this article were made by Heinz-Otto
Peitgen and his colleagues at the Uni-
versity of Bremen. Peitgen learncd the
art from Hubbard.

Hl.lhh;u'n;l'h program has inspired a
program [ call manpeLzoom, The
program sets up an array called pe,
which 15 needed for saving pictures.
The entries of pic are separate picture
¢clements called pixels, which are ar
ranged in a grid pattern. Hubbard's ar-
ray has 400 columns and 400 rows,
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and Peitgen’s is even larger. Readers
who want 10 adapt MANDELZOOM for
personal use must choose an array
suited to their cquipment and tempera-
ment. Larger arrayvs impose a longer
wailt for the pictures, but they improve
the resolution,

In the first part of MANDELZOOM One
may sclect any square region of the
complex plane to be examined. Speci-
[y the southwest corner of the square
with the complex number 1o which it
corresponds. Two variables in the pro-
gram, acarner and boerner, enable one
to enter the real part and the imagi-
nary part of the number respectively.
Specify the length of each side of the

Fhe Mandelbror set and its coordingtes in the complex plane, The desails shown on the cover and on the next two pages are entlined



square by entering a value for a vari-
able called side.

The second part of the program ad-
justs the array pic to match the square
of interest by computing the size of a
variable called gap. Gap is the distance
within the square. between adjacent
pixels. To obtain gap divide side by the
number of rows (or columns) in pic.

The heart of the program is its third
part. Here a search 15 made for the
complex numbers ¢ in the Mandelbrot
set, and colors are assigned to the num-
bers that are, in a special sense, near-
by. The procedure must be carried out
once for every pixel; thus Hubbard's
400-by-400  array requires 160,000

separate computations. Assume the
program is currently working on the
pixel in row s and column »; the third
part then breaks down into four steps:

1. Calculate one complex number ¢

that is assumed to represent the pixel:
add »n ¥ gap 1o acorner 10 obtain the
real part ac of ¢ add m X gap to beor-
ner to obtain the imaginary part be of
e. It is not necessary to include the
imaginary number § in the program.

2. Set a complex variable z (which
has parts az and bz) equal to 0 + 0,
Set an integer variable called cownr
equal to 0.

3. Carry out the following three
steps repeatedly, until either the size of
zexceeds 2 or the size of connt exceeds
1,000, whichever comes firsi:

Z2 =zt
CONnE <
size <

codenr 4+ 1

size of z

Why is the number 2 so important? A
straightforward result in the theory of
complex-number iterations guarantees
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that the iterations will drive z to infini-
ty if and only if at some stage z reaches
a size of 2 or greater. It turns oul that
relatively many points with an infinite
destiny reach 2 after only a few itera-
tions. Their slower cousins become in-
creasingly rare at higher values of the
variable count.

4. Assign a color to pie (m.n) accord-
ing to the value reached by connr at the
end of step 3. Display the color of
the corresponding pixel on the screen.
Mote that the color of a pixel depends
on only one complex number within
its tiny domain, namely the one at its
northeast corner; the behavior of this
number then represents the behavior
of the entire pixel.

The scheme for assigning colors re-
quires that the range of conm values
attained within the array be grouped
into subranges, one subrange for cach

Successive enlargements of the “shepherd s crook™ in region a of the image on the preceding page



color. Pixels for which the size of z
reaches 2 after only a few iterations
are colored red. Pixels for which the
size of z reaches 2 after relatively
many iterations are colored violet, at
the other end of the spectrum. Pixels
for which the size of z is less than 2
even after 1,000 iterations are assumed
to lie in the Mandelbrot set; they are
colored black.

It makes sense to leave the colors
unspecified until the range of counr val-
ues in a particular square has been de-
termined. If the range is narrow, the
entire color spectrum can then be as-
signed within that range. Thus Hub-
bard suggests that in step 4 only the
value of count be assigned to each ar-
ray element of pie. A separate program
can then scan the array, determine the
high and low values of counr and as-
sign the spectrum accordingly. Read-
ers who get this far will certainly find
workable schemes.

The reader who does not have a
color monitor can still take part in
black and white. Complex numbers
for which z is larger than 2 after r it-
erations are colored white. The rest
are colored black. Adjust rto taste. To
avoid all-night runs the array can be,
say, 100 rows by 100 ¢columns. Hub-
bard also suggests it 15 perfectly rea-
sonable to reduce the maximum num-
ber of iterations per point from 1,000
to 100, The output of such a program
is a suggestive, pointillistic image of its
colored counterpart [see ilfustration on
next page).

ow powerful is the “zoom lens™ of
a personal computer? It depends
to some degree on the effective size of
the numbers the machine can manipu-
late. For example, according to Magi
(my microcomputer amanuensis at the
University of Western Ontario), the
IBM PC uses the 3088 microproces-
sor, a chip manufactured by the Intel
Corporation designed to manipulate
16-bit numbers. A facility called dou-
ble precision makes it possible to in-
crease the length of each number to 32
bits. With such double precision Magi
and I calculate that magnifications on
the order of 30,000 times can be real-
ized. Higher precision software that in
effect strings these numbers together
¢an enhance the numerical precision
to hundreds of significant digits. The
magnification of the Mandelbrot set
theoretically attainable with such pre-
cision is far greater than the magnifica-
tion needed to resolve the nucleus of
the atom.

Where should one explore the com-
plex plane? Near the Mandelbrot set,
of course, but where precisely? Hub-
bard says that “there are zillions of
beautiful spots.” Like a tourist in a

A miniature Mandelbrot in region § on page 17, techered to the main set by a filament




Paingillise, miniature Mandelbrot generated by a monochrome monitor

land of infinite beauty, he bubbles with
suggestions about places readers may
want to explore. They do not have
names like Hawaii or Hong Kong:
“Try the arca with the real part be-
tween .26 and .27 and the imaginary
part between O and .01." He has also
suggested two other places:

Real Parr
=76 10 —.74
—1.26 to —1.24

Imaginary Part
01 o 03
A1 o 03

The reader who examines the col-
or images accompanying this article
should bear in mind that any point
having a color other than black does
not belong to the Mandelbrot set.
Much of the beauty resides in the halo
of colors assigned to the flecing points.
Indeed, if one were to view the set in
isolation, its image might not be so
pleasing: the set is covered all over
with filaments and with miniature ver-
sions of itself.

In fact none of the miniature Man-
delbrots are exact copies of the par-
ent set and none of them are exact-
ly alike. Near the parent set there are
even more miniature Mandelbrots, ap-
parently suspended freely in the com-
plex plane. The appearance is deceiv-
ing. An amazing thcorem proved by
Hubbard and a colleague, Adrian
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Douady of the University of Paris,
states that the Mandelbrot set is con-
nected. Hence even the miniature
Mandelbrots that seem to be suspend-
ed in the plane are attached by fila-
ments to the parent set. The minatures
are found almost everywhere near the
parent set and they come in all sizes.
Every square in the region includes an
infinite number of them, of which at
most only a few are visible at any given
magnification. According to Hubbard,
the Mandelbrot set is “the most com-
plicated object in mathematics.”
Readers with a simple appetite for
more color images of the Mandelbrot
set and other mathematical objects
can write to Hubbard for a brochure
{Department of Mathematics, Cornell
University, Ithaca, MN.Y. 148353). The
brochure includes an order form with
which one can buy 16-inch-square col-

..0r prints that are similar in quality to

the Peitgen images shown here.

onfronted with infinite complexity

it is comforting to take refuge in

the finite. Iterating a squaring process

on a finite set of ordinary integers also

gives rise to interesting structures, The

structures are nol geomelric but com-
binatorial.

Pick any number at random from 0

through 99. Square it and extract the

last two digits of the result, which must
also be a number from 0 through 99.
For example, 592 is equal to 3,481; the
last two digits are 81. Repeat the proc-
ess and sooner or later you will gen-
erate a number you have already en-
countered. For example, 81 leads to
the sequence 61,21, 41 and 81, and this
sequence of four numbers is then re-
peated indefinitely. It turns out that
such loops always arise from iterative
processes on finite sets. Indeed, it is
easy 1o see there must be at least one
repeated number after 100 operations
in a set of 100 numbers; the first re-
peated number then leads to a loop.
There is a beautiful program for de-
tecting the loops that requires almost
no memory, but more of this later,

It takes only an hour to diagram the
results of the squaring process. Repre-
sent each number from 0 through 99
by a separate point on a sheet of paper.
If the squaring process leads from one
number to a new number, join the cor-
responding points with an arrow. For
example, an arrow should run from
point 59 to point 81. The first few con-
nections in the diagram may lead to
tangled loops, and so it is a good idea
to redraw them from time to time in
such a way that no 1wo arrows cross. A
nonintersecting iteration diagram is al-
ways possible.

One can go even further. Sceparate
subdiagrams often arise, and they can
be displayed in a way that highlights
some of the symmetries arising from
the iterations. For example, the nonin-
tersecting iteration diagram for the
squaring process on the integers from
() through 9% includes six unconnected
subdiagrams. The pieces come in iden-
tical pairs and cach piece is highly
symmetrical [see ilfustration on oppo-
site page]. Can the reader explain the
symmetry? What would happen if the
integers from O through 119 were used
instead? Is there a relation between the
number of unconnected pieces found
in the diagram and the largest integer
in the sequence?

Similar patterns of iteration hold for
some of the complex numbers in the
Mandelbrot set: for certain values of ¢
repeated werations of 22 + ¢ can lead
to a finite cycle of complex numbers.
For example, the complex number
0 + 17 leads to an indefinite oscillation
between the two complex numbers
=1+ 1i and 0 — Ii. The cycle may
even have only one member, Whether
such ¢ycles are found in a finite set or
in the infinite Mandelbrot set, they are
called attractors.

Each of the six parts of the iteration
diagram for the integers O through 99
includes one attractor. Geometrically
the attractor can be represented as a
polygon, and the sets of numbers that



lead into it can be represented as trees.

One way to find an attractor by com-
puter is to store each newly generated
number in a specially designated ar-
ray. Compare the new number with all
the numbers previously stored in the
array. If a match is found, print all the
numbers in the array from the match-
ing number to the number just created.
The method is straightforward and
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casy to program. Nevertheless, it can
take a long time if the array is large.
An attractor cycle within an array that
includes » numbers would take on the
order of #2 comparisons to discover:
each new number must be compared
with up to n numbers in the array.
There is a clever little program that
will find an attractor much faster. The
program requires not # words of mem-

ory but only two, and it can be encod-
ed on the simplest of programmable
pocket calculators. The program is
found in a remarkable book titled
Marhemarical Recrearions for the Pro-
grammable Calenlator, by Dean Hoff-
man of Auburn University and Lee
Maohler of the University of Alabama.
Meedless to say, many of the topics
that are covered in the book can be
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T3 33
T 17
27 67
29 79 1 89
23 83
71 38
59 3
a7 13
9 ki1 19 &9
53 ar
3 &7
a7 63
3z 68
18 £l a2
26 T4

The six components of the iteration diagram for squaring the firse 106 infegers
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readily adapted to compuler programs.

The program is called rRHOP because
the sequence of numbers that eventu-
ally repeats itself resembles a picce
of rope with a loop at one end. It
also resembles the Greek letter rho
(p). There are two variables in the pro-
gram called sfow and fasr. Initially both
variables are assigned the value of
the starting number. The iterative cy-
cle of the program includes just three
instructions:

Jase« fast X fast (mod 100)
fast < fast X fast (mod 100)
slow = slow > slow (mod 100)

The operation mod 100 extracts the
last two digits of the products. Note
that the squaring 15 done twice on the
number fasr but only once on the num-
ber sfow. Fasr makes its way from the
tail to the head of the rho twice as fast
as slow does. Within the head fas
catches up with sfow by the time sfow
has gone partway around. The pro-
gram exits from its iterative cycle
when fast is cqual 1o sfow.

The attractor is identified by reiter-
ating the squaring process for the num-
ber currently assigned to slow. When
that number recurs, halt the program
and print the intervening secquence of
numbers,

[ should be delighted 1o see readers’
diagrams that explore the effects of it-
erative squaring on finite realms of
varying size. The diagrams can be done
on a computer or by hand. Discrete
iteration is a newly developing mathe-
matical ficld with applications in com-
puter science, biomathematics, physics
and sociology. Theorists might watch
for a book on the subject by Francois
Robert of the University of Grenoble.

he two-dimensional beings who in-
habit the planet Arde are deeply
grateful to the many readers who tried
to improve the crossover circuit 1 de-
scribed in May. That circuit is made up
of 12 two-inputl nand-gates. 1 asked
readers to find the minimum number
of nand-gates—and nand-gates only—
frem which a crossover circuit can be
built. Most of the circuits submitted
have 10 gates, a mild improvement,
but three readers found an eight-gate
crossover [see iifustration on this page}:
In the eight-gate circuit there is one
three-input nand-gate and two single-
input nand-gates. The latter act as in-
verters, converting a 0 signal into a |
signal and vice versa. The three read-
ers who discovered the eight-gate solu-
tion are Eric [ Carlson of Cambridge,
Mass., Dale C. Kocpp of San Josc,
Calif., and Steve Sullivan of Beaver-
ton, Ore. | have passed their names
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along with the improved crossover cir-
cuit to my Ardean friends. Believe it
or not, the same crossover circuit ap-
pears under U.S. Patent 3,248,573
(April 26, 1966). Robert L. Frank,
who is a systems consultant in Bir-
mingham, Mich., wrote that the pat-
ent was awarded to Lester M. Span-
dorfer of Cheltenham, Pa., Albert B.
Tonik of Dresher, Pa., and Shimon
Even of Cambridge, Mass.

It seems natural to wonder wheth-
er the circuit actually appears in any
present-day device. It 1s also natural to
wonder whether there is an even small-
er nand crossover. One supposes not,

C. Walter Johnson of Long Beach,
Calif., wrote to me describing a wide
variety of planar circuits that incorpo-
rate several types of gate. Apparently
it is possible to build not only cross-
over circuits in two dimensions but
also planar flip-flops. The flip-flops
provide memory for a two-dimension-
al computer.

One-dimensional computers in the
form of cellular automata have been
mvestigated by Stephen Wolfram of
the Institute for Advanced Study in
Princeton. It is too carly to say what
contributions readers may have made
to this field after reading Wolfram's
“Ghder Gun Guidelines,” but 1 can
pass along some initial reactions. A sin
of commission sent a few readers off
chasing gliders in the line automaton
code-numbered 792, Wolfram and 1
meant o specify code 357. A sin of
omission was my decision not to men-
tion the line automata known to be
capable of universal computation. [
thought of describing such a line au-
tomaton, first constructed by Alvy Ray
Smith in 1970. At the time Smith was
a graduate student at Stanford Univer-
sity. 1 was afraid that the description
of Smith’s universal line automaton
would unduly complicate the article:
the automaton has 18 states (k = 18)
and three-cell neighborhoods (- = 1),

Arthur L. Rubin of Los Angeles has
made a sensible suggestion for defining
the speed of light in an arbitrary line
automaton. Rubin's suggestion cor-
rects a defect in an earlier definition
that sets the speed of light cqual to one
cell per unit of time. The old definition
ignores the possibility that not all au-
tomata can attain such speeds. The re-
vised speed of light is “the maximum
speed of propagation of any impulse
{say to the right).” The leading edge of
the impulse is defined by the condition
that only 0°s can lie to its right. Rubin
goes on to prove that the speed of light
is 1/3 for the line automaton code-
numbered 792,

In my May column I also asked
whether the line automaton called

A crossover ciecuit with eighe nand-gares

Ripple has a one-way glider gun. Glid-
ers fired from such a gun would spew
out unendingly to the right but never to
the left. William B. Lipp of Milford,
Conn., has made a simple and charm-
ing argument against the existence of
such a gun. “Consider a pattern,” he
writes, “that never has nonzero values
to the left of some block labeled 0.
Observe that the leftmost nonzero val-
ue in the pattern must always bea 1. If
it were a 2, the 2 would ripple to the
left forever, thus contradicting the as-
sumption that no nonzero entries lic to
the left of block O. But the leftmost 1
must become 0 on the next cycle, mov-
ing the left boundary of the pattern at
least one block to the right.” Thus ei-
ther a glider ripples to the left or its
gun is eaten away by (’s.

Other readers sought to show that
Ripple is not capable of universal com-
putation. For some automata one can
prove a sufficient condition, namely
that the halting problem is decidable.
Ripple halts when all its cells contain
0°s, but the halting conditions for any
universal computing machine it might
contain could be quite different.

Several readers attempted construc-
tions of line automata capable of
universal computation, among them
Frank Adams of East Hartford, Conn.,
Jonathan Amsterdam of Cambridge,
Mass., Kiyoshi [gusa of Brandeis Uni-
versity and Carl Kadie of East Peoria,
1ll. The constructions are all straight-
forward and believable, but Kadie, not
content with his one-dimensional au-
tomaton, went on to suggest a zero-di-
mensional one. It would consist of a
single cell, and it seems reasonable o
call it a point automaton. Readers with
a theoretical bent might enjoy ponder-
ing the universality of a point automa-
ton. Is it possible?

Alvy Ray Smith published his proof
for the existence of a computation-uni-
versal line automaton in 1971, in Jowr-
nal af the Asseciation for Compuiting Ma-
chinery. One might have thought a
career with such an auspicious start
would today be blossoming in some
well-known academic institution. In-
stead 1t has blossomed in a quite dif-
ferent setting: Smith is director of
computer-graphics research for Lu-
casfilm, Ltd., in San Rafael, Calif. In
a future column [ hope to report on
some of the amazing cinematic effects
produced at the Lucasfilm laboratory.



